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FOREWORD

This report was prepared by the Space and Information Systems
Division of North American Aviation, Inc., Downey, California, for the
George C. Marshall Space Flight Center, National Aeronautics and Space
Administration, Huntsville, Alabama, under Contract No. NAS8-11490,
""Study of Longitudinal Oscillations of Propellant Tanks and Wave Propaga-
tions in Feed Lines, ' dated January 6, 1965, Dr. George F, McDonough
(Principal) and Mr, Robert S. Ryan (Alternate) of Aero-Astrodynamics
Laboratory, MSFC, are Contracting Officer Representatives. The work is
published in five separate parts:

Partl - One-Dimensional Wave Propagation in a Feed Line

Part II - Wave Propagation in an Elastic Pipe Filled With
Incompressible Viscous Fluid

Part III - Wave Propagation in an Elastic Pipe Filled With
Incompressible Viscous Streaming F'luid

Part IV - Longitudinal Oscillation of a Propellant-Filled Flexible
Hemispherical Tank

Part V - Longitudinal Oscillation of a Propellant-Filled Flexible

Oblate Spheroidal Tank

The project was carried out by the L.aunch Vehicle Dynamics Group,
Structures and Dynamics Department of Research and Engineering Division,
S&ID, Dr. F.C. Hung was the Program Manager for North American
Aviation, Inc. The study was conducted by Dr., Clement L. Tai (Principal
Investigator), Dr. Michael M. H. Loh, Mr. Henry Wing, Dr. Sui-An Fung,
and Dr, Shoichi Uchiyama. Dr, James Sheng, who started the investigation
of Part IV, left in the middle of theprogramto teach at the University of
Wisconsin, The computer program was developed by Mr, R.A. Pollock,
Mr. F, W, Egeling, and Mr, S, Miyashiro,
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ABSTRACT

b2 1

The study of the longitudinal wave propagation in an
elastic pipe filled with imcompressible viscous fluid at
rest has been extended to include the effect of steady
stream.

The Navier-Stokes equations are first introduced for
an axisymmetric and incompressible flow, Linearization
and simplification are obtained by the assumptions of
small disturbance and small fluid viscosity. By linearizing
the boundary conditions, the equations of motion of the
pipe are greatly simplified and become linear. Pertur-
bation technique is applied; the perturbed equations are
solved by two transformations and the boundary layer
method, Finally, based on the equations of motion of
pipe and fluid and proper boundary conditions, a character-
istic equation is formed in terms of phase velocity ratio
and four independent parameters — viscosity parameter,
steady-state velocity parameter, and the axial and radial
inertia parameters. This fourth-order complex-valued
characteristic equation is then separated, corresponding
to real and imaginary parts, into two equations that are
solved by digital computing, The method of numerical
analysis and computing procedures are described in
detail and some results are presented.
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NOMENCLATURE

Constant

Constants

Phase velocity

Phase velocity in fluid at rest
Root-mean-square error of e| and e,
Error from first equation

Error from second equation

Young's modulus of materials
Thickness of pipe wall

ST

Wall inertia factor, 1=

(1 -02) Powz

Ek?2

Complex propagation constant, k = k; + ik,
Phase factor

Attenuation factor

kl h
Ph i , -
ase velocity parameter K, 5 ZPR
o
Attenuation parameter, K =i Eh
P T2 w\[2PR_
v O

Length of pipe

- xi -
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n Constant
o Indicates order of magnitude
P Pressure
P Constant (refer to Equation (3-24)
Q Volumetric flow rate
r Coordinate in radial direction
t Time
T Tensile force (refer to Equations (2-6) and (2-7))
u Displacement of pipe wall in axial direction
U Constant
Us Average steady-state velocity
v Fluid velocity component
A" Function of r (refer to Equation 3-22)
w Displacement of pipe wall in radial direction
w Constant (refer to Equation 3-25)
x Coordinate in axial direction
X Function of r (refer to Equation 3-21)
y Radius ratio, y = Rr

o

1/2

z Viscosity parameter, z = R0 <p—:—)

Q)] @)2) @21 @22 Coefficients (refer to Equation 3-45)

2
(1 -07)pP.h
2PR
(o]

B Axial inertia parameter, P =

- xii -
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on

2T\

s
U
Steady-state velocity parameter, Y =
Eh
2P R
o
Small distance
. . 78 -2
Dimensionless number, ¢ = ———— =z
2
PwR
o

Radial inertia parameter, n =

E
Wave length

Dynamic viscosity

Mass density

Poisson's ratio

Stress component

Function of y (refer to Equation (3-32))
Function of Q (refer to Equation (3-36))
Stream function

Function of r (refer to Equation 3-29)

Phase velocity ratio, X = —i{T /ng

o

Circular frequency of disturbance

Dimensionless independent variable,

Q = l;y = z(l-y) (refer to Equation (3-36))

€

- xiii -
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Superscripts
s Steady stream
' Perturbed stream
Subscripts
0] Unstressed
1 Surrounding materials
6 Circumferential direction
x Axial direction
r Radial direction

- Xiv -
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1, INTRODUCTION

The problem of wave propagation in an elastic pipe filled with
incompressible and viscous fluid was discussed in Part II of this report
(Reference 1), The work discussed in this part extends the investigation
to a more general situation in which the pressure waves travel through a
system filled with streaming fluid.

The propagation of pressure waves through liquid-filled elastic pipes
has been investigated by many authors; attempts to take account of the steady
stream have also been made by others (References 2, 3, 4, 5, and 6), In
the previous works, either the motion was restricted to parallel flow or the
average stream velocity was used instead of the actual nonuniform velocity,
as has been discussed in Part II of this report. The present investigation
set out with the classical Navier-Stokes equations of two-dimensional flow
with axisymmetric motion. The elastic equations of the pipe are derived
on the basis of a thin shell. These equations are simplified by omitting
terms of small order of magnitude, By means of the perturbation technique
and boundary lager analysis based on the smallness of the parameter
(1/Ro)(p/wp )1/ , a characteristic equation is obtained. The general
approach to the solution follows closely the procedures of Morgan and
Ferrante (Reference 5), who merit full credit of their excellent work., The
terms contributed by the radial pipe wall inertial forces, which were omitted
by Morgan and his associate, are retained in this analysis. In the case of
wave propagation of light-weight fluid such as liquid hydrogen through a
metallic tube, it is important to examine the effect of both these inertial
forces,

The characteristic equation is being solved numerically with the aid of
a digital computer, It is hoped that the results of the numerical analysis
will reveal the relations among the various parameters and the influence of
the steady stream upon which waves are superposed. Due to the complex
nature of the characteristic equations, at the time this report was prepared
no conclusive results comparable to those of wave propagation through fluid
at rest have been obtained. However, the analytical procedures are discussed
fully and partial results are presented.

-1 -
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2. BASIC EQUATIONS

The Navier-Stokes equations expressed in cylindrical coordinates with
the assumptions of incompressible fluid and axisymmetrical motion are

[aY

2 2\

ov ov gv_.\ v 8v_ v. 8%
r r r)_ 3P r 1 _'r ™r r _
p(at FVeer T Yy ax)— ar+P< z T zt ) (2-1)

ar ar r axz
2 2
ov ov. ov. o%v ov o°v
x x xX\)_ _ap x 1% X _
p(at +vr 8r+vx ax)— ax+p( 2+r ar+ 2) (2-2)
or oxX

Here p and p are the mass density and dynamic viscosity of the fluid,

respectively; p is the pressure; vV, and v, are the velocity components of
fluid in the axial and radial directions, respectively.

The continuity equation is

ov v ov
X r
e o =0 -3
8x+r or (2-3)

The normal and shear forces acting on a unit area perpendicular to the
radius are given by

aVr

Ter TP 2o (2-4)
avX avr

x " \ar ' Bx (2-5)

For a thin elastic pipe, the hoop tension, Tgs and the tensile force,
T4, respectively, are

Eh [w . _0u
T, = . (R vo ) (2-6)
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Eh ou w
T, = (e “R—) (2-7)
1 -0 o

where u and w are the axial and radial components of displacement of the pipe
Then the equations of motion of the pipe are given in the following

wall,
forms:
82 _ (R £) Eh w o, au
P B = Ty BB - (7 TR 5% (2-8)
ot l -0 R o)
o
2 2
3 u _ Eh g u g oOw
pO h —2- = - Tl‘X (R-9 X,y t) + ) < 2 + R 8X> (2'9)
ot l -0 0x o

where Py and h are the mass density and thickness of pipe wall, respectively.
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3. PERTURBATION METHOD

Since we are investigating the problem of pressure wave propagation
superposed on a steady stream, we assume all the dependent variables to
have the form

u = uS + u! (3-1)
s
w=w + w! (3-2)
v, = vi + v)'( {3-3)
v, = V: + V; (3-4)
— s 1
p=p tp" (3-5)

where the superscripts s and prime refer to steady and perturbed quantities,

Applying the perturbation solutions, Equations (2-1) and (2-2) yield two
sets of equations for the steady and the perturbed motion. For the steady
state,

s 2
v avs s 0 VS azvs ov vs
p s T 5 rl__9p b r., r,. 1 r (3-6
or X ox ar 2 2 r or 2 -6)
ox or r
s s s 2 s
. savx+vsavx_ BPS+H oV +lavx 9 Vv
r or X 9x 9x 2 'r or * 5 2 (3-7)
x

s
ov! ov av! ! 1 1
p T o +y S T . 0 . ov s av + oyl avr
ot r 9 r or r or X 0x X 9x Vx ox
90! /azx'r Bz'v" atvr’ vvv' \
P r r r Tr
=-—= 4+ I + - - -
or ( 2 2 T oy "2 (3-8)
9x or r
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S S

a 1 1 [4 1 1 1
f)<é+vs avx+v' 8Vx+v' dVX+v' 32‘—+ S avx+ 2=

EY: r 9r = 'r 9r r ar x 9x @ 'x 8x @ 'x 0x

oo (2% 12 o
=P 4 += -

ox 2 r dr + 2 (3-9)

ar ox

If we linearize the boundary conditions at the interface of pipe and
fluid by evaluating parameters at R, rather than at the true radius R, the
Equations (2-8) and (2-9) become linear. Then the elastic equations (2-8)
and (2-9) and the continuity equation (2-3) apply to both the steady and
perturbed states with appropriate superscripts,

STEADY-STATE SOLUTION

The investigation commences with the assumption of steady-state flow,
Since it is stipulated that the slope of the disturbed pipe wall is very small,
the radial velocity, v, and its derivatives may be expected to be small,
From Equation (3-6), it may be said that p is a function of x only and the con-
tinuity equation, dv§/9x becomes very small, then Equation (3-7) becomes

; s
4 dvX - dps
dr \' dr /T R ax (3-10)
Integrating Equation (3-10) with proper boundary conditions, the velocity
profile is obtained:
s _ (Rs)2 dpS 1 r \2 (3-11)
Vx T 74K & r "

If the average velocity and volumetric flow rate are denoted by U® and Q
respectively, the pressure gradient may be expressed as

s t

dp  _ 8uQ . 8p s
—= - = - U (3-12)

TT(RS) 4 (Rs)Z

Neglecting v:, Equations (2-8) and (2-9) of steady flow become

, s s
s Eh w g oJu
p = + (3-13)
1 _0_2 RZ Ro ox
o
-6 -
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or s 2 ox

s

ov. 2 s s

b X _ Ehz(a u +RO' ow ) (3-14)
r=R 1l -0 ox o

Differentiating Equation (3-13) with respect to x and combining with Equa-
tions (3-12) and (3-14) gives

ow® -4 pU® [Ro|? - Rs“__dRs (3-15)
dx ~  Eh s R T odx

R L O/J

Integrating from x = 0 to x = L, gives

s _4(2-0‘)}1US
x =L x=0 Eh

L (3-16)

If p,-g is denoted as the average pressure at this entrance section of
the pipe where x = 0 and u® = 0, by stress-strain rela.tion,wX may be

=0
expressed as

2
(pX _a) R
= — (3-17)
V=0 Eh

Since v}s{ and vls. may be written in terms of R® and R® in terms of x (refer to
Equations (3-11) and (3-15)), then terms like 8v/9x and 8v§/dx may be
evaluated. Thus, by using the continuity Equation (2-3), and hydrodynamic
Equations (2-1), we have

- lprZR 2 s 3
Ve oz e— s (1 R ) L.\ (3-18)
r szh(RS)7 ZRo RS ZRO Rs
3205U%)A(R ) s
o} 2
p = 5 2 -0 r + P.o (3-19)
Eh(R®) R -

The axial displacement, us, is found through Equation 3-13,

. er/i 2 s W\R,
w® = ——p° - 2..)—3-dx (3-20)
o BT
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THE PERTURBATION EQUATIONS

The pertinent equations of the liquid motion are Equations (3-8) and
(3-9). The investigation will be limited to a disturbance that is harmonic in
time and of small amplitude. By the first limitation, v}'{ and vi‘ may be
expressed as

v)'(=X(r)exp [i(kx-wt)] (3-21)
v;=V(r)exp [i(kx-wt)] (3-22)

where X and V are functions of r, w is the circular frequency of the forced
disturbance, k is a complex propagation constant and may be expressed as

ky + ik,, of which k; is the phase factor representing the phase shift and k,

is an attenuation factor representing a measure of the decay of the disturbance
as the wave travels along the pipe, Because of the second limitation, the
nonlinear terms of the primed quantities in Equations (3-8)and (3-9) become
negligibly small and are dropped from the equations,

Further simplification of the equation may be obtained by dropping the
terms v?(’av;{/ar), v;{(avs/ar) and azv}';/axz, because the relative magnitudes
of these terms are much smaller than the corresponding terms v;(av}s{/ar),
v§(8v}2/8x), and azv'/arz. Thus, Equation (3-9)becomes

s 2
5v! 8VX s v'X op' ) V}'{ 1 8v}'{
! == = e —_— -
P at * Vr or * Vx Ix 9x tF 81.2 * r Jr (3-23)

Since vi. and its derivatives are expected to be small, as mentioned before,
from Equation (3-8), 8p'/dr = 0; therefore, we may write

p' = P exp [i(kx -wt)] (3-24)

consequently, for a thin-wall pipe, we may also write

w' = W exp [i (kx -wt) ] (3-25)

u! = U exp [i (kx - wt)] (3-26)

SID 66-46-3
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where P, W and U are all constants, Then the equations of motion of the pipe
wall become

- Ehz Wi +<P-2p-?—Y-)=-p hoeW

1 -0 RZ Ro or o
(o]
Eb (Pu+iZaw) -u (B =-»p hlu
2 R or o
i1-¢ o) 7

Solving these two equations, gives

. 2
U =1 w_ p(l - o )<d_X_> (3-27)
KR, 1 -1 Ehkz(l-l)dr.

r=Ro
b ZEhW ) i Eh;NI = kl(pitr 1)(%) o notw (3-28)
R°“(1-I) (1-¢7)R “(1-1) h
o o =R
r=Xo
where 2
P uw’(l-02)
1=-2 >
Ek

and is called the wall inertia factor. The last term, PothW, representing
the influence of the radial wall inertia.

SOLUTION TO THE PERTURBED EQUATIONS

Introducing the stream function V' (x, r, t) and letting v'= w (r) .
exp [i (kx -w t)] , 'Equation (3-23) becomes

3 2 . 2
d v 1dv 1 ip s T - db
dr3-rdr2+?+H w- 2kU 1 - SZ a—r-
(R)
. s .
-31—9—%@+%on (3-29)
p(R7)
-9 .
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The relationships betweenv,, v, and ' are v} = (-1/r)(ay'/ar) and
vi = (1/r) (ay'/ax). In addition,

X(r)=(-1/r){egy/ar)

(3-30)
V(r)=i—rk—kll

The nonslip boundary condition at the pipe wall may be written as

Ju!

! =
v (Ro, x, t) —at
ow!
1 = —_—
vr (Ro’ x, t) 5t

Thus,

X(R ) = - iwU
°© (3-31)

V(RO) = -iwW

Using Equations (3-27), (3-28), and (3-29) together with the boundary
Equation (3-31), the three unknowns U, W and ¥ can be solved.

Since the viscosity is assumed to be small, the technique customarily
applied in boundary layer analysis may be used to solve the present problem.,
Letting y = r/Ro and ¥ = C¢(y) where C is a dimensioned constant, then
Equation (3-29) becomes

a% e d% ¢ . 2 kU® 2|l d¢ 4ixuU®
¢ LI S LA (1-y9 <2 .22y
3 2 2 w dy w
dy y dy y
2
ikR_P
+ ~%PC yv=0 (3-32)

where ¢ = p/fPw ROZ, a dimensionless quantity that is assumed to be small,
The constant C can be so selected as to make the last term dimensionless,
Such a C is Ca (w/k) (WR,).

Since ¢ is small, the influence of the viscosity will be limited to a

narrow neighborhood near the wall, Therefore, it is expected that ¢¢ and
(¢d™¢ /dy") are negligible outside the boundary layer, compared with ¢ and

- 10 -
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(dn¢ /dy™). But this is not true near the wall. Let ¢ = b + d)c, where ¢
is the solution of ¢ away from the wall, and ¢, is the correcting term of ¢
within the boundary layer. By so doing, two equations result: first, for the
flow region outside the boundary layer,

d¢ R Py
k. .8 2 o k\..s k2 "o _
[I-Z-Q—’U (1 -y )] dy -4(—5)U y¢>°+ (;) W =0 (3-33)
Its solution is
R P
k s 2 o
¢, = C' [1-2;0 (L-y M +3 —5 (3-34)
4U° P W
where C' is an arbitrary constant.
Second, for the flow region inside the boundary layer.
3 2 : '
d¢c € d¢c € . 2xU® 2 d‘i)c
€ -— + et i}l - (1 -y)
dy dy y
s
kU
(3-35)

- 4y —— =0
4i = y¢c

Before the solution is attempted, a new independent variable 2 and a

new dependent variable & will be introduced into the above equation. Let
Q2=(1/e®) (1 - y) where n is a positive number and &(Q) = ¢.(y). Then,

Equation ( 3-35) becomes

3 1-2n\ 2 s
(€1-3n) e, [ ae S [1 2K (ZenQ_GZnQZ)]
ao 1 -¢tQf ae (1-¢"Q) |

(3-36)

1\ 4% k__s n
—_— 1 — - @—
<E> +4i=U (1 -¢ Q) =0

- 11 -
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From an examination of the coefficients of d"®/dQD, it is obvious that
the first and third terms are larger than the second and fourth. The smaller
ones are dropped and the first and third terms assumed to be of the same order
of magnitude so as to balance each other. Thus we have 1 - 3n = -n, or
n = 1/2. Equation (3-36) becomes

d ¢ .do
3 l_dQ =0 (3-37)
dQ

The solution of this equation, then, is

®=A, . exp(iNiQ)+ A

] .- exp (-iNi) + A

2 3

The condition placed on ¢, and hence on & is that & approaches zero as r
approaches zero. This is possible only if Ay = A3 =0,

From the relationship between ® and ¥, an expression of ¥ is obtained
in terms of the two unknown constants, A} and C'. However, C' may be
determined by using Equation (3-30); that is, V(r)or (i k/r) ¥ must vanish
at r = 0, Thus we have

el=

Rop k__s -1
Cc' = - ———(I-Z-Q;U)

4U® oW

If a new constant, B}, is defined containing the remaining unknown, A}, as

then

1

2 -—
2 r
= ‘ i Ni - 3-38
34 k s) + B1 . exp |1 Ni e < R > ( )

o]

-12 -
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Applying Equation (3-38) to (3-30) gives

1 1
B - _ L
X(r)=E P T +rR1 inNie Zexp inie 2<--I—g—> (3-39a)
wP(l—Z—-U) o o
W
2 ikB =
V(r) ==X P s exp|inic 2(-_1’; (3- 39b)
w 29(1-22U'> ! | J
w

Evaluating Equations (3-39) at r = Ry, and comparing the results with

(3-31) leads to Equations (3-40) and (3-41).

1
k P iNie 2
- 5 + 3 B1 +iwU =0 (3-40)
@ pé -2=U ) R
w o
2 RP B
(5) 2 S-ERI-wzo (3-41)
w ZP(I-Z—U) “Ro
w
To determine U and P from Equations (3-27)and (3-28).
d_x.]
dr r = R
o
must be evaluated first. From Equation (3-39a),
B
‘l}_(] =1 t_+ 1-1 (2-42)
dr )y = R, RZ NZe

The last two terms can be dropped out; they are insignificant because the
boundary layer analysis can be expected to yield a good approximation only

to the first power of .

- 13 -
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Substituting
45} _2u
dr. s = R R3€
o o

into Equations (3-27) and (3-28), we have

2
—_
ioW t(l-0")pB

U - 1 (3-43)

kR, (1-1) Ehkz(l-l)eRi
oubB
S oL — - EhIZ 5 —Pohwz W+ 2 L (3-44)
(I-DR_ (1 -07) (1 - DR keR_ (1 -1)

Substituting the above values of U and P into Equations (3-40) and (3-41),
two simultaneous equations result:

o =
app WHe By 0

ayy WHeay,; By =0

This system will have nontrivial solutions only if the determinant of the
coefficients vanishes; that is

11 12
=0
%21 ®22
This gives
o . a,, -« el =0 (3-45)

- 14 -
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@, = - (5:-))3 (Tszhc)Z R, (1 - z%us) (1-1)

. 1R02(§>3< Eh >2 (1 i ZEUS)(I -1

l -0 ZpRo

" (‘)@—ﬂz:i)Z(Ef(ZEp}ﬁo)(Ro)z (1 -2 Us) (1 - I)Z]

b

D) -2k o)

o 22 RN ()0 (-2 50 -
o]

- [%(1 - o9 (1 - 2=y 5)2 (1 - I)]

B} [92_ (E)Z(_%’ﬁﬁ (1 - zéus) (1 - 1)] (3-45b)
%21 =(l:§)2 (251:0)(1 ) ZEUS)-I (1-p7" -1

(1 _.TZI 1-1 (%)2<2f§0>(1 - Z%US>

2 -1
P_h ky 2 k
-( °-.f)\(—\ (R) (1 - Z;Us) (3-45¢)
\ ap /\w/ [ MY /
_ ok 2k __s\ =1 k
%22 ~ 2eR_(I-T) (I'TU } "WR (3-45d)
o]

- 15 -
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1/2
Rearranging Equation (3-45) and defining X = (k/w) (Eh/2pR,) / , called
phase velocity ratio, we have

1 i Wi Pw \| 4 k.s 1
<1-1 0_2> <1+ 5 RO > + \:-0‘+0'~°-J—U +'z'-]

=

2
. p hw 2
1 2 k __s o k
-—-4—(1 -0 ) <|. - ZZSU > +__2_-<_Q-)> RO = 0 (3"‘46)

and r
1-1 =0 (3-46a)
Four new parameters are defined as follows:

US

Yy = ——— steady-state velocity (3-47a)
1/2
Eh parameter
<ZPR >
o
C -c®)eh
p = >PR axial inertial (3-47b)
o parameter
oo
= —F— radial inertial (3-47c¢)
parameter
Pw 1/2
z = R o viscosity parameter (3-474d)
- 16 -
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Equation (3-46) becomes dimensionless:

1 -2—35(1-1)](1-’1)7(4 Y ["V%+ ""%]XSJ’ [1 'z_le?(l'i)]

e

2 2
r1+£3 ( -—1—2-) - %n (1-0‘2) - <%+ cr)] x2 + (1-; )YX- 1 '46 =0 (3-48)

l-o

This is a fourth-order equation containing complex numbers. One way to
solve this equation is to separate its real part from the imaginary part. The
result of this separation is

(K‘l1 i er Kg + K‘Z*) <1-i)(1-n) - (4K';’ K, - 4K1K2>—Z— (1-1)
2\2 22

(a2 v Y2 x, ) (=) (-=)
' N2 N2 2N2

1 -4
z 1 1 2 3
e (1) a2
(1.2)2\f2 (1_024( )4
1 2 1 0'2
-9 i = 3-4
+K1 > Y > 0 (3-49)
~ 17 -
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and
(K‘l1 . 6K? K§+K‘21)< z >(1 _n)
2\2
+<4K?1’K2-4K1K§)< -—z—>(1-n)
2\2
+(3 K? KZ_K‘;’)<Z +0’>Y-E-(K?1’ - 3K, Kg)
N2 N2
He ) 2 heel L) a0 - (300
2N2 l-0
" <2K1K2> <1 -L> 1+ B<n -—2> -%n(l_vz)_(_Jr U)
2\2 l-0
oot Y=0 3-50
+K2 — 2 - ( - )
where
K —kl Eh 1z is th ha arameter
1575 ZPRO e phase par e
and

2 2PR

kZ Eh 1/2 . .
K =— is the attenuation parameter
o

- 18 -
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4, NUMERICAL SOLUTION

There are several ways to solve the two simultaneous fourth-order
Equations (3-49) and (3-50). However, it seems that the combination of the
root-mean-square error and contour plot technique is the most suitable
method,

A pair of values, one for the phase velocity parameter, K], and another

for the attenuation parameter, K,, are arbitrarily chosen and substituted
into the two equations. Since it is unlikely that the exact solution will be
chosen, two errors, e and e), result from these equations. If the root-

2 1/2
mean-square of these two errors be called e, then e = (el + eg / . The
better the estimate is, the smaller the root-mean-square error will be,

The set of K] and K2 values causing e = 0 is the solution of the equations for

the particular assigned values of the four independent parameters.,

Because of the limitations of the computer, the location of the point
where e = 0 must be determined by trial and error. The way in which the
computer program performs is, inthe region of K; and K; specified for

the trial, hundreds of root-mean-square errors are calculated; then, through

these points, contour lines of different values of root-mean-square error
are drawn, The point having zero root-mean-square value is determined by
the programmer from the K-graph which is the output of the designated Kj
and K2 computer program. Since it is difficult to make the right choice of
the ranges of K; and K; on the first estimate, the program must be run
twice or more for one set of K} and K, values. Because of the combined
effort of the computer and human judgement, the calculation becomes quite
tedious and time consuming.

Three K-graphs are attached: Figure 1 shows the coordinates, of one
solution of K} = 1.92 and K, = 0,01 for 8= 4.0, N1=0.1, Y= 10-6, and
z = 10, In Figure 2, there are two solutions of points Ky = 0.01, Ky =0.93;
and Ky = 0.77, K; = -0.01l for =m =Y =0 and z= 0,1, The other two
points are the images of the first two. Since -K; and -K; will cause exactly
the same numerical values of the e} and e, as +K; and +K3, there is always
an image point symmetrical about the origin where K| = K; = 0. Therefore,

- 19 -
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After the values of K; and K, are found, they are fed into another
computing program called "FEDLIN" to calculate the velocity profiles and
other needed values. The program has a subroutine for plotting graphs of
different combinations of the independent variables or parameters., Since
the imaginary parts of the final answer have no physical meaning, only the
real parts of the complex values of the pressure and velocities are used in
the graphs,

By inspecting Equations (3-21) and (3-22), then (3-39), there is a
singularity at the center of the pipe for both v and v{. The computing pro-
gram for calculating and plotting the velocity profiles is, therefore, written
to cover the radius ratio, r/Rg from & to 1.0, where 6§ is an arbitrary
small distance from the center line of the pipe. Since the flow is continuous
and finite throughout the region, it is possible to assign a value of & as
small as we please. At the present, its value is 0, 1. A set of graphical
results that includes different kinds of velocity profiles and pipe wall dis-
placements is included at the end of this report.

Table 1 shows the values of the constants and parameters used for
making the calculations with the FEDLIN program,

Table 1, Computer Input Data for FEDLIN Program for Figures Indicated

Value*
Term Unit Group 1 . Group 2
E Psi 3.0 x 107 3.0 x 107
o - 0.3 0.3
Px =0 Psi 40,0 40,0
P Psi 2.0 2.0
X Feet 20.0 15.96
w Rad/Sec 0.1885 7.0
t Sec 1.0 0.224
K - 0.241 0. 16
K, - 0. 308 0.135
z - 99.2 10.0
n - 1.37 x 10-11 0.01
Y - 0.011 1.0 x 10-4
B - 0.287 1.0

#*Group l: Figures 4a, 5a, 6, 7, 9, and 10
Group 2: Figures 4b, 5b, 8, lla, and 11lb

- 20 -
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5. CONCLUDING REMARKS AND RECOMMENDATIONS

Because of the complex nature of the computing procedure, only a
portion of the results have been generated to date. These computer outputs
have shown that:

1. The axial velocity profile of the perturbed state is extremely
sensitive to the viscosity of the flowing fluid. The boundary
layer grows rapidly when the viscosity increases.

2. The magnitude of the perturbed axial velocity is very small in
comparison with that of the steady-state velocity. This is con-
sistent with the assumption of oscillation with small amplitude.

3. The steady flow does affect the phase velocity in the fluid.
However, more data are needed to show the exact relationship.

4, Additional computer data is required to show the interrelationships
between velocity profiles and various parameters and to compare
with the results of wave propagation through fluid at rest discussed
in Part II.

This study has covered the influence of pipe wall inertia in both the
axial and radial directions. However, the results are limited to an incom-

pressible fluid of such small viscosity that (HUS/Eh) ()‘/Ro) « 1 for a

long wave length disturbance. Because of the severity of this assumption,
it is recommended that the study be extended to the more practical case of
ignoring the small viscosity effect but taking the compressibility of the

fluid into full account, Instead of the Navier-Stokes equation, this proposed
approach would use the well-known wave equation coupled with Donnel's
axisymmetrical cylindrical shell equation.
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Figure 1. Error Contour-plot Solution for Equations (3-52)

and (3-53), Showing One Solution
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Figure 2. Error Contour-plot Solution for Equations (3-52)
and (3-53), Showing Two Solutions and Their Images
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